The newly completed unit is slated to undergo running tests at an ENEOS site starting in fiscal 2022, to collect data pertaining to the robot's long-term operation and its inspection performance. The collected inspection data will also be effectively used to develop an app capable of early detection of signs of abnormality, to further increase the robot's product value.
The EX ROVR, by performing round-the-clock inspections under potentially explosive atmosphere conditions, makes positive contributions to enhancing worker safety, boosting work efficiency, and improving facility operating rates. The robot's explosion-proof qualification has already been certified both domestically and globally by the International Electrotechnical Commission (IEC)(3) and ATEX certification(4), explosion-proof standards widely adopted in Europe and other regions. These qualifications will enable the EX ROVR's safe usage under Zone 1 combustible gas conditions(5).
The adoption of a 6-DOF(6) explosion-proof manipulator with light-equipped camera enables close-up and front-facing photography, from diverse positions, of complexly arranged plant instrumentation. Measurement of gas density, sound recording, and acquisition of thermal images are also possible. In addition, when used in combination with the online app provided as a standard feature, the operator can perform remote setting and management of inspection schedules and confirmation of inspection data. In the event of an incident occurring in the plant, remote monitoring enables swift identification of on-site conditions, thereby contributing to higher plant inspection efficiency and safe, swift resolution of the incident in question.
Going forward, through proposals of new solutions making use of the Company's explosion-proof robot technologies, MHI will continue to contribute to ever higher safety and productivity in oil refineries and other plants having combustible gas environments.
(1) For details on this collaboration, refer to the following news release: www.mhi.com/news/20091002.html
(2) A robot described as "explosion-proof" is equipped with features that collectively limit the danger of the robot igniting an explosion or fire from its own electric sparks or heat in environments filled with inflammable gas.
(3) The IEC issues "IECEx" certificates that attest to equipment's suitability for use in explosive atmospheres. IECEx certification, which is widely adopted internationally, is based on quality assessment standards set by the IEC.
(4) ATEX certification refers to two directives relating to explosive atmospheres (French: ATmospheres EXplosibles). The directives, which are based on IECEx, stipulate the health and safety requirements, and conformity assessment procedures, that must be met in order to bring to the EU market equipment or protective systems for use in explosive atmospheres. As the ATEX directives and IECEx follow the same standards, there is fundamentally no difference in terms of their technical details.
(5) Zone 1 refers to an area in which an explosive gas atmosphere is likely to occur in normal operation.
(6) DOF: degrees of freedom. The EX ROVR's manipulator end-effector can move in the upward, downward, right, left, forward and rear directions. It can also tilt forward or backward, swing to the left or right, and rotate tilted to the left or right.
For further information, see: www.mhi.com/products/energy/ex_rovr.html
About MHI Group
Mitsubishi Heavy Industries (MHI) Group is one of the world's leading industrial groups, spanning energy, logistics & infrastructure, industrial machinery, aerospace and defense. MHI Group combines cutting-edge technology with deep experience to deliver innovative, integrated solutions that help to realize a carbon neutral world, improve the quality of life and ensure a safer world. For more information, please visit www.mhi.com or follow our insights and stories on spectra.mhi.com.
Source: Mitsubishi Heavy Industries, Ltd.
Copyright 2022 ACN Newswire . All rights reserved.